A Novel Extension of the Fréchet Distribution: Statistical Properties and Application to Groundwater Pollutant Concentrations
DOI:
https://doi.org/10.63017/jdsi.v1i1.3Keywords:
Beta prime distribution, Order statistics, Groundwater, Pollution, CalciumAbstract
In this work, we propose and study a novel generalization of the Fréchet distribution called the odd beta prime Fréchet (OBPF) distribution. This distribution was an extension of the Fréchet distribution by applying the odd beta prime generalized family of distributions. The proposed model can be expressed as a linear mixture of Fréchet densities. The shapes of the density function possess great flexibility. It can accommodate various hazard shapes, such as increasing, decreasing, and reversed J. Some important statistical properties of the OBPF are derived, including the ordinary and incomplete moments, order statistics, and quantile function. We have used the maximum likelihood estimation method to estimate the model parameters. The application and flexibility of the new distribution are empirically proven using groundwater pollution data sets compared to other competing distributions. The new model can be used instead of existing lifetime distributions and is suitable to fit data with right-skewed and left-skewed behaviors
References
H. A. Loáiciga, “Probability Distributions in Groundwater Hydrology: Methods and Applications,” J. Hydrol. Eng., vol. 20, no. 5, p. 4014063, doi: 10.1061/(ASCE)HE.1943-5584.0001061.
A. A. Suleiman, U. A. Abdullahi, A. Suleiman, R. B. Yunus, and S. A. Suleiman, “Assessment of Groundwater Quality Using Multivariate Statistical Techniques,” in Intelligent Systems Modeling and Simulation II: Machine Learning, Neural Networks, Efficient Numerical Algorithm and Statistical, Methods: Springer, pp. 567–579.
A. A. Suleiman, A. Ibrahim, and U. A. Abdullahi, “Statistical explanatory assessment of groundwater quality in Gwale LGA, Kano state, northwest Nigeria,” Hydrospatial Anal., vol. 4, no. 1, pp. 1–13,.
V. V Singh, A. A. Suleman, A. Ibrahim, U. A. Abdullahi, and S. A. Suleiman, “Assessment of probability distributions of groundwater quality data in Gwale area, north-western Nigeria,” Ann. Optim. Theory Pract., vol. 3, no. 1, pp. 37–46,.
M. Fréchet, “Sur la loi des erreurs d’observation,” Математический сборник, vol. 32, no. 1, pp. 5–8,.
S. Kotz and S. Nadarajah, “Extreme value distributions: theory and applications,” world Sci.
H. M. Alshanbari, A. M. Gemeay, A. A.-A. H. El-Bagoury, S. K. Khosa, E. H. Hafez, and A. H. Muse, “A novel extension of Fréchet distribution: Application on real data and simulation,” Alexandria Eng. J., vol. 61, no. 10, pp. 7917–7938, doi: 10.1016/j.aej.2022.01.013.
F. C. Morales, Estimation of max-stable processes using Monte Carlo methods with applications to financial risk assessment. The University of North Carolina at Chapel Hill.
A. Zaharim, S. K. Najid, A. M. Razali, and K. Sopian, “Analyzing Malaysian wind speed data using statistical distribution,” in Proceedings of the 4th IASME/WSEAS International conference on energy and environment, vol. 2426, p. 360370.
M. Mubarak, “Parameter estimation based on the Fréchet progressive type II censored data with binomial removals,” J. Qual. Reliab. Eng., vol. 2012.
M. Eliwa, “A new one-parameter lifetime distribution and its regression model with applications,” PLoS One, vol. 16, no. 2, p. 246969.
S. Nasiru, “Extended Odd Fréchet-G Family of Distributions,” J. Probab. Stat., vol. 2018, p. 2931326, doi: 10.1155/2018/2931326.
M. El-Morshedy, F. S. Alshammari, Y. S. Hamed, M. S. Eliwa, and H. M. Yousof, “A New Family of Continuous Probability Distributions,” Entropy, vol. 23, no. 2, p. 194, [Online]. Available: https://www.mdpi.com/1099-4300/23/2/194.
A. M. Gemeay, “General two-parameter distribution: Statistical properties, estimation, and application on COVID-19,” PLoS One, vol. 18, no. 2, p. 281474, doi: 10.1371/journal.pone.0281474.
H. M. Yousof, E. Altun, T. G. Ramires, M. Alizadeh, and M. Rasekhi, “A new family of distributions with properties, regression models and applications,” J. Stat. Manag. Syst., vol. 21, no. 1, pp. 163–188, doi: 10.1080/09720510.2017.1411028.
S. Nadarajah and A. Gupta, “The beta Fréchet distribution,” Far east J. Theor. Stat., vol. 14, no. 1, pp. 15–24,.
A. Z. Afify, H. M. Yousof, G. M. Cordeiro, E. M. M. Ortega, and Z. M. Nofal, “The Weibull Fréchet distribution and its applications,” J. Appl. Stat., vol. 43, no. 14, pp. 2608–2626, 2016, doi: 10.1080/02664763.2016.1142945.
M. Hamed, F. Aldossary, and A. Z. Afify, “The four-parameter Fréchet distribution: Properties and applications,” Pakistan J. Stat. Oper. Res., pp. 249–264,.
M. M. Mansour, E. Elrazik, E. Altun, A. Z. Afify, and Z. Iqbal, “Pak,” j. Stat., vol. 34, no. 6, pp. 441–458.
P. E. Oguntunde, M. A. Khaleel, M. T. Ahmed, and H. I. Okagbue, “The Gompertz fréchet distribution: properties and applications,” Cogent Math. Stat., vol. 6, no. 1, p. 1568662.
R. H. A. El Khaleq, “The Generalized Odd Log-Logistic Fréchet Distribution for Modeling Extreme Values,” Pakistan J. Stat. Oper. Res., pp. 649–674,.
S. E. A. Rasool and S. F. Mohammed, “New odd Chen Fréchet distributions: Properties and applications,” Int. J. Nonlinear Anal. Appl.
N. Alsadat, “The novel Kumaraswamy power Frechet distribution with data analysis related to diverse scientific areas,” Alexandria Eng. J., vol. 70, pp. 651–664, doi: 10.1016/j.aej.2023.03.003.
A. A. Suleiman, H. Daud, N. S. S. Singh, M. Othman, A. I. Ishaq, and R. Sokkalingam, "A Novel Odd Beta Prime-Logistic Distribution: Desirable Mathematical Properties and Applications to Engineering and Environmental Data," Sustainability, vol. 15, no. 13, p. 10239, 2023.
A. A. Suleiman, H. Daud, N. S. S. Singh, M. Othman, A. I. Ishaq, and R. Sokkalingam,"The Odd Beta Prime-G Family of Probability Distributions: Properties and Applications to Engineering and Environmental Data," in Computer Sciences & Mathematics Forum, 2023, vol. 7, no. 1: MDPI, p. 20.
A. A. Suleiman, “A New Statistical Model Based on the Novel Generalized Odd Beta Prime Family of Continuous Probability Distributions with Applications to Cancer Disease Data Sets.” .
G. M. Cordeiro, M. Alizadeh, T. G. Ramires, and E. M. M. Ortega, “The generalized odd half-Cauchy family of distributions: Properties and applications,” Commun. Stat. - Theory Methods, vol. 46, no. 11, pp. 5685–5705, doi: 10.1080/03610926.2015.1109665.
M. Alizadeh, G. M. Cordeiro, A. D. C. Nascimento, M. C. S. Lima, and E. M. M. Ortega, “Odd-Burr generalized family of distributions with some applications,” J. Stat. Comput. Simul., vol. 87, no. 2, pp. 367–389, doi: 10.1080/00949655.2016.1209200.
Ã. Mustafa, M. Alizadeh, H. M. Yousof, and N. S. Butt, “The generalized odd Weibull generated family of distributions: statistical properties and applications,” Pakistan J. Stat. Oper. Res., pp. 541–556,.
B. Hosseini, M. Afshari, and M. Alizadeh, “The generalized odd gamma-g family of distributions: properties and applications,” Austrian J. Stat., vol. 47, no. 2, pp. 69–89,.
C. Chesneau and T. E. Achi, “Modified Odd Weibull Family of Distributions: Properties and Applications,” J. Indian Soc. Probab. Stat., vol. 21, no. 1, pp. 259–286, doi: 10.1007/s41096-020-00075-x.
A. Z. Afify and M. Alizadeh, “The odd Dagum family of distributions: Properties and applications,” J. Appl. Probab. Stat., vol. 15, no. 1, pp. 45–72,.
Z. Ahmad, “The Zubair-G Family of Distributions: Properties and Applications,” Ann. Data Sci., vol. 7, no. 2, pp. 195–208, doi: 10.1007/s40745-018-0169-9.
R. A. R. Bantan, C. Chesneau, F. Jamal, I. Elbatal, and M. Elgarhy, “The Truncated Burr X-G Family of Distributions: Properties and Applications to Actuarial and Financial Data,” Entropy, vol. 23, no. 8, p. 1088, [Online]. Available: https://www.mdpi.com/1099-4300/23/8/1088.
J. T. Eghwerido, P. E. Oguntunde, and F. I. Agu, “The Alpha Power Marshall-Olkin-G Distribution: Properties, and Applications,” Sankhya A, doi: 10.1007/s13171-020-00235-y.
A. I. Ishaq and A. A. Abiodun, “The Maxwell–Weibull distribution in modeling lifetime datasets,” Ann. Data Sci., vol. 7, no. 4, pp. 639–662,.
R. Bantan, F. Jamal, C. Chesneau, and M. Elgarhy, “Type II Power Topp-Leone Generated Family of Distributions with Statistical Inference and Applications,” Symmetry (Basel)., vol. 12, no. 1.
K. Hamid, A. Mahmoud, A. Morad, and M. Y. Haitham, “The Odd Log-Logistic Burr-X Family of Distributions: Properties and Applications,” J. Stat. Theory Appl., vol. 20, no. 2, pp. 228–241, doi: 10.2991/jsta.d.210609.001.
N. Alotaibi, I. Elbatal, E. M. Almetwally, S. A. Alyami, A. Al-Moisheer, and M. Elgarhy, “Truncated Cauchy power Weibull-G class of distributions: Bayesian and non-Bayesian inference modelling for COVID-19 and carbon fiber data,” Mathematics, vol. 10, no. 9, p. 1565.
S. A. Alyami, M. G. Babu, I. Elbatal, N. Alotaibi, and M. Elgarhy, “Type II Half-Logistic Odd Fréchet Class of Distributions: Statistical Theory and Applications,” Symmetry (Basel)., vol. 14, no. 6, p. 1222.
M. M. Badr, I. Elbatal, F. Jamal, C. Chesneau, and M. Elgarhy, “The transmuted odd Fréchet-G family of distributions: Theory and applications,” Mathematics, vol. 8, no. 6, p. 958.
I. Elbatal, N. Alotaibi, E. M. Almetwally, S. A. Alyami, and M. Elgarhy, “On odd perks-G class of distributions: properties, regression model, discretization, Bayesian and non-Bayesian estimation, and applications,” Symmetry (Basel)., vol. 14, no. 5, p. 883.
A. M. Almarashi, F. Jamal, C. Chesneau, and M. Elgarhy, “A new truncated muth generated family of distributions with applications,” Complexity, vol. 2021, pp. 1–14,.
A. Ishaq, A. Usman, M. Tasi’u, A. Suleiman, and A. Ahmad, "A New Odd F-Weibull Distribution: Properties and Application of the Monthly Nigerian Naira to British Pound Exchange Rate Data," in 2022 International Conference on Data Analytics for Business and Industry (ICDABI), 2022: IEEE, pp. 326-332.
S. Nasiru, P. N. Mwita, and O. Ngesa, “Alpha power transformed Frechet distribution,” Appl. Math. Inf. Sci., vol. 13, no. 1, pp. 129–141,.
C. J. Tablada and G. M. Cordeiro, “The modified Fréchet distribution and its properties,” Commun. Stat. - Theory Methods, vol. 46, no. 21, pp. 10617–10639, doi: 10.1080/03610926.2016.1239115.
Z. M. Nofal and M. Ahsanullah, “A new extension of the Fréchet distribution: Properties and its characterization,” Commun. Stat. - Theory Methods, vol. 48, no. 9, pp. 2267–2285, doi: 10.1080/03610926.2018.1465080.
R. V Silva, T. A. Andrade, D. B. Maciel, R. P. Campos, and G. M. Cordeiro, “A New Lifetime Model: The Gamma Extended Fréchet Distribution,” J. Stat. Theory Appl, vol. 12, no. 1, pp. 39–54,.
U. A. Abdullahi, A. A. Suleiman, A. I. Ishaq, A. Usman, and A. Suleiman, “The Maxwell Exponential Distribution: Theory and Application to Lifetime Data,” J. Stat. Model. Anal., vol. 3, no. 2.

Downloads
Published
Versions
- 2023-12-19 (5)
- 2023-12-19 (4)
- 2023-12-19 (3)
- 2023-12-19 (2)
- 2023-08-28 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Data Science Insights

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.