Cluster Analysis of Superstore Data using K-Means and K-Medoids for Product Delivery Insights
DOI:
https://doi.org/10.63017/jdsi.v3i2.34Keywords:
Clustering, K-Means, K-Medoids, Market TrendsAbstract
It is difficult to overcome the challenge of understanding the relationship between consumer patterns and overall market trends and improve the company's operational efficiency through optimizing the delivery process. Utilizing sales data from Super Store available on the Kaggle website, this study aims to identify predictable consumer patterns using cluster analysis, as well as explore how to improve delivery efficiency based on a better understanding of consumer needs and preferences. This research utilizes K-Means and K-Medoids clustering methods to group product subcategories into three categories: best-selling, in-selling, and not-selling. The process of data transformation, exploratory analysis, model building, as well as cluster performance evaluation were conducted with the help of analytical tools such as Microsoft Excel, Tableau, and RapidMiner. The results show that the K-Medoids algorithm provides more accurate clustering performance compared to K-Means, with a Davies-Bouldin Index value of -0.867 for K-Medoids and -0.519 for K-Means. This shows that K-Medoids is more suitable in describing the characteristics of existing data. The most in-demand cluster results are in the sub-category of machines and copiers products.
References
W. Aprilyani et al., “Klasterisasi Data Penjualan Alat Transportasi dengan Rapidminer menggunakan Metode K-Medoid," vol. 8, no. 2, pp. 1348–1353, 2024.
H. Syahputra, “Clustering Tingkat Penjualan Menu (Food and Beverage) menggunakan Algoritma K-Means,” J. KomtekInfo, vol. 9, pp. 29–33, 2022, doi: 10.35134/komtekinfo.v9i1.274.
A. Nugraha, O. Nurdiawan, and G. Dwilestari, “Penerapan Data Mining Metode K-Means Clustering untuk Analisa Penjualan pada Toko Yana Sport,” Jati (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 849–855, 2022, doi: 10.36040/jati.v6i2.5755.
M. N. Setiawan, Purwono, and I. A. Ashari, “Terakreditasi Sinta Peringkat 4 Analisa Cluster Data Transaksi Penjualan Minimarket selama Pandemi Covid-19 dengan Algoritma K-means,” vol. 3, no. 1, pp. 153–160, 2018.
R. Gustrianda and D. I. Mulyana, “Penerapan Data Mining dalam Pemilihan Produk Unggulan dengan Metode Algoritma K-Means dan K-Medoids,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 27, 2022, doi: 10.30865/mib.v6i1.3294.
L. Anwer, “SuperStore Sales Dataset,” www.kaggle.com. Accessed: Jun. 25, 2024. [Online]. Available: https://www.kaggle.com/datasets/laibaanwer/superstore-sales-dataset
N. Suarna and Y. Arie Wijaya, “Analisa Penerapan Metode Clustering K-Means untuk Pengelompokan Data Transakasi Konsumen (Studi Kasus: Cv. Mitra Indexindo Pratama),” J. Mhs. Tek. Inform., vol. 7, no. 2, pp. 1322–1328, 2023.
geeksforgeeks, “Normalisasi Data dalam Data Mining,” www.geeksforgeeks.org. Accessed: Jun. 25, 2024. [Online]. Available: https://www.geeksforgeeks.org/data-normalization-in-data-mining/
Trivusi, “Metode-Metode dalam Feature Selection,” www.trivusi.web.id. Accessed: Jun. 25, 2024. [Online]. Available: https://www.trivusi.web.id/2019/02/metode-metode-dalam-feature-selection.html
D. Vogiatzis, “Panduan Anda tentang Teknik Transformasi Data,” blog.coupler.io. Accessed: Jun. 25, 2024. [Online]. Available: https://blog.coupler.io/data-transformation-techniques/
Y. Ws, “Mengenal Exploratory Data Analysis," eksplorasidata.mipa.ugm.ac.id. Accessed: Jun. 25, 2024. [Online]. Available: https://eksplorasidata.mipa.ugm.ac.id/2021/08/16/mengenal-exploratory-data-analysis/
R. Maoulana, B. Irawan, and A. Bahtiar, “Data Mining dalam Konteks Transaksi Penjualan Hijab dengan menggunakan Algoritma Clustering K-Means,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 515–521, 2024, doi: 10.36040/jati.v8i1.8504.
Y. Sopyan, A. D. Lesmana, and C. Juliane, “Analisis Algoritma K-Means dan Davies Bouldin Index dalam mencari Cluster Terbaik Kasus Perceraian di Kabupaten Kuningan,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1464–1470, 2022, doi: 10.47065/bits.v4i3.2697.
Youtap, “Cara Jitu mengetahui Produk Paling Laris Sesuai Tren Pasar,” www.youtap.id. Accessed: Jun. 25, 2024. [Online]. Available: https://www.youtap.id/blog/cara-mengetahui-produk-paling-laris
N. Ameliana, N. Suarna, and W. Prihartono, “Analisis Data Mining pengelompokkan Umkm menggunakan Algoritma K-Means Clustering di Provinsi Jawa Barat,” vol. 8, no. 3, pp. 3261–3268, 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Data Science Insights

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.