
2 (2) August 2024

Data Science Insights

Contents lists available at https://citedness.com/index.php/jdsi

Data Science Insights

Journal Page is available to https://citedness.com/index.php/jdsi

Research article

Evaluating and Deploying Predictive Models for Weather

Classification

Jolin Arfina Lie

Department of Informatics Engineering, Institut Bisnis dan Teknologi Pelita Indonesia, Pekanbaru, Riau, Indonesia

email: jolin.arfina@student.pelitaindonesia.ac.id

A R T I C L E I N F O A B S T R A K
Article history:

Received

Revised July 14, 2024

Accepted July 17, 2024

Available online 01 August, 2024

Weather is the condition of the atmosphere in a specific location over a relatively short

period of time, described through various parameters such as temperature, air

pressure, wind speed, humidity, and other atmospheric phenomena. It differs from

climate, which refers to the average atmospheric conditions over a large area and a

long time period—studied under the field of climatology. Weather can vary from hot

to cold, wet to dry, and windy to calm. It is influenced by dynamic changes in the

Earth’s atmosphere, including warming and cooling processes.In recent years,

weather changes have become more frequent and unpredictable, significantly

affecting daily human activities. Therefore, an intelligent system capable of detecting

and predicting weather conditions is increasingly needed. This study aims to apply

classification algorithms to predict weather conditions based on relevant

meteorological parameters. The algorithms used include k-Nearest Neighbor,

Random Forest, Naïve Bayes, Decision Tree, and Deep Learning.Given the

irregularity and complexity of weather patterns, manual prediction becomes

unreliable. Although it is impossible to predict the weather with absolute certainty,

computational methods can provide reasonably accurate estimations. Based on the

evaluation results, the Random Forest algorithm demonstrated the highest accuracy

among the tested models. Furthermore, the final model was successfully deployed

using Python, enabling real-time predictions on incoming weather data.

Keywords:

Analysis

Algorithm
Classification

Prediction

Weather

Please cite this article in IEEE

style as:

J. A. Lie, “Evaluating and

Deploying Predictive Models for

Weather Classification”, Data
Science Insights, vol. 2, no. 2.

Correspondence:

Jolin Arfina Lie, Department of

Informatics Engineering, Institut

Bisnis dan Teknologi Pelita Indonesia,

Pekanbaru, Riau, Indonesia

 Data Science Insights is an open access under the with CC BY-SA license.

1. Introduction

Weather is the condition of the air in a place over a relatively short period of time, expressed by the values

of several parameters such as temperature, air pressure, wind speed, air humidity, and various other

atmospheric phenomena [1]. Weather is different from climate. Climate is the average temperature over a

large area over a long period of time. The science that studies climate is called climatology. Weather can be

hot or cold, wet or dry, windy or calm. Weather is caused by changes in the atmosphere around the Earth,

either warming or cooling.

Recently, weather changes have been frequent and have had a significant impact on daily activities. Rapid

weather changes can hinder human activities. Weather changes that are difficult to predict make it difficult

for people to determine alternatives and anticipate weather changes when traveling [2]. Therefore, a system

is needed that can detect weather conditions.

This research aims to apply and compare several classification algorithms to predict weather conditions.

Given the irregularity of weather patterns, manual prediction is extremely difficult. While we cannot predict

the weather with certainty, we can still make estimates.

2. Literature Review

Classification is a technique for forming models from unclassified data, to be used to classify new data

[3]. Data classification is the process of finding a model or function that explains and differentiates data classes

and their concepts [4]. This classification is a supervised learning method that attempts to find relationships

between input attributes and target attributes. The purpose of this classification is to increase the reliability of

the results obtained from the data [5].

https://citedness.com/index.php/jdsi
https://citedness.com/index.php/jdsi
https://creativecommons.org/licenses/by-sa/4.0/

115

2.1 k-Nearest Neighbors

The Nearest Neighbor algorithm is an algorithm that classifies data based on the proximity (distance) of

data to other data. Classification is the process of assessing data objects to assign them to a specific class from

among a number of available classes [6]. This method is non-parametric, meaning it makes no assumptions

about the underlying data distribution. In other words, there is no fixed number of parameters or parameter

estimates in the model, regardless of the data size. k-NN classifies new data based on the majority class of the

k-Nearest Neighbors in the feature space as shown in Figure 1.

Figure 1. k-Nerest Neighbor (k-NN) Illustration

2.2 Decision Trees and Random Forests

Decision treeis a machine learning algorithm used to perform classification and regression by breaking

down a dataset into smaller subsets based on certain features.This algorithm creates a model in the form of a

tree structure, where each internal node represents a feature or attribute, each branch represents a decision rule,

and each leaf represents an outcome or class label [7]. Meanwhile, Random Forest is a combination of several

decision trees. By combining several decision trees, random forest can produce a more accurate classification

model.

2.3 Naïve Bayes

Naïve Bayes is a method that divides problems into classes based on characteristics of similarities and

differences by using statistics that can predict the probability of a class [8]. NBC is a classification algorithm

that can be used to predict the probability of class membership by applying Bayes' theorem [9].

2.4 Deep Learning

Deep learningis a representation learning method that allows computational models composed of many

processing layers to learn data representations with many levels of abstraction [10]. Deep learning models

mimic the way the human brain works to solve classification problems. Deep learning processes data by

automatically extracting complex features.

3. Research Methodology

Data processing (Figure 2) is the process of manipulating, organizing, and storing data in order to draw

conclusions. The data processing process involves several stages: data collection, data processing, data

analysis, and data presentation.

Figure 2. Data Science Process

3.1 Data Selection/ Collection

From the operational data set before starting the Knowledge Discovery in Database (KDD) process. The

data that has been selected for use in the data mining process is then stored in a separate file from the

operational database [11]. At this stage, data collection was carried out in the form of a dataset regarding past

weather through the Kaggle website, with the title Weather Type Classification [12].

Data
Selection/
Collection

Preprocesing/
Cleaning

Data Mining/
Modeling

Model
Deployment

116

3.2 Pre-processing/ Cleaning

Data Cleaning is a stage carried out to handle data if missing values occur, removing columns that are

not really used or imbalances in the data[13]. In this process, we remove data in the weather dataset that has

no value (null) and duplicate data [14].

3.3 Data Mining/ Modelling

Data Mining is a process of data extraction or data filtering by utilizing data sets that are quite large in

size through a series of processes to obtain valuable information from the data [15]. Model development was

carried out by testing five different algorithms and comparing them to find the most suitable one. For the

weather dataset, several classification algorithms will be compared to compare their accuracy. The methods

used for this comparison are Cross Validation and Hold Out.

3.4. Model Deployment

After the development and training process of the weather classification model is completed, the next

important stage is model deployment. This stage aims to implement the classification model into a system that

can be used in a real-world context. The deployment process enables the trained model to receive actual weather

data and produce weather classifications automatically, quickly, and accurately

4. Results and Discussion

4.1. Data Selection/ Collection Results

Based on the obtained dataset, there are several attributes such as Temperature, Humidity, Wind Speed,

and others (Figure 3). The weather dataset includes several Weather Types (weather classes): Rainy, Cloudy,

Sunny, and Snowy, which will be used as labels. The dataset contains 13,200 rows of data.

Figure 3. Sample Weather Dataset

4.2. Preprocessing or Cleaning Results

In the data cleaning process for the weather dataset, the examples filter (Figure 3) was used to remove

missing values. After checking, no missing values were found in the processed data (Figure 4).

 Figure 3. Data Cleaning Process in Rapid Miner

Figure 4. Filter examples

117

4.3. Data Mining/ Modeling

In the model building process, it is essential to evaluate model performance objectively to ensure its ability to

generalize well to unseen data. Therefore, this study employs two commonly used validation approaches in

machine learning: the Hold-Out method and Cross-Validation. By using both validation methods, the study

allows for a more comprehensive comparison of model performance, and provides a stronger basis for selecting

the best algorithm to be deployed in the final stage.

4.3.1. Hold Out Method

Model development was carried out by testing five different algorithms and comparing them to find the

most suitable one. The rapidminer structure, as shown in Figure 5, begins by reading the dataset and then

dividing it into 70% test data and 30% training data.

 Figure 5. Hold Out Model

Naïve Bayes

Figure 6. Results of the Naïve Bayes Algorithm

The results of the naïve Bayes algorithm can be seen in Figure 6. The algorithm has an accuracy level of

87.60%.

118

k-NN (k-nearest neighbors)

Figure 7. Results of the K-Nearest Neighbors Algorithm

The results of the k-NN algorithm can be seen in Figure 7. The algorithm has an accuracy level of 88.84%.

Decision Tree

Figure 8. Decision Tree Algorithm Results

The results of the decision tree algorithm can be seen in Figure 8. The algorithm has an accuracy level of

90.08%.

Random Forest

Figure 9. Random Forest Algorithm Results

The results of the random forest algorithm can be seen in Figure 9. The algorithm has an accuracy

level of 90.35%.

Deep Learning

Figure 10. Deep Learning Algorithm Results

The results of the deep learning algorithm can be seen in Figure 10. The algorithm has an accuracy

rate of 90.93%. This accuracy rate is the highest compared to other algorithms.

119

4.3.2. Cross Validation Method

The rapidminer structure, as shown in Figure 11, begins by reading the dataset and then dividing it into

70% test data and 30% training data. Afterward, cross-validation is performed, which includes classification.

Figure 11. Cross Validation Model

Naïve Bayes

Figure 12. Naïve Bayes Algorithm Using Rapidminer

In the training process, the naïve Bayes algorithm process will be run (Figure 12), and for the testing section,

the Apply Model and Performance processes will be used to produce the results of the process and its accuracy.

Figure 13. Results of the Naïve Bayes Algorithm

The results of the naive Bayes algorithm can be seen in Figure 13. The algorithm has an accuracy rate of

87.14%. This accuracy is supported by relatively high precision and recall values.

120

k-Nearest Neighbors (k-NN)

Figure 14. K-Nearest Neighbors Algorithm using Rapidminer

In the training process, the k-NN algorithm process will be run (Figure 14), and for the testing section, the

Apply Model and Performance processes will be used to produce the results of the process and its accuracy.

Figure 15. Results of the K-Nearest Neighbors Algorithm

The results of the k-NN algorithm can be seen in Figure 15. The algorithm has an accuracy rate of

88.80%. This accuracy rate is higher than testing on data using the Naive Bayes algorithm.

Decision Tree

Figure 16. Decision Tree Algorithm Using Rapidminer

In the training process, the Decision Tree algorithm process will be run (Figure 16), and for the testing section,

the Apply Model and Performance processes will be used to produce the process results and their accuracy.

Figure 17. Decision Tree Algorithm Results

The results of the decision tree algorithm can be seen in Figure 17. The algorithm has an accuracy

level of 90.35%.

121

Random Forest

Figure 18. Random Forest Algorithm Using Rapidminer

In the training process, the Random Forest algorithm process will be run (Figure 18), and for the testing

section, the Apply Model and Performance processes will be used to produce the results of the process and its

accuracy.

Figure 19. Random Forest Algorithm Results

The results of the random forest algorithm can be seen in Figure 19. The algorithm has an accuracy

rate of 90.95%. This accuracy rate is the highest compared to other algorithms.

Deep Learning

Figure 20. Deep Learning Algorithm Using Rapidminer

In the training process, the Random Forest algorithm process will be run Figure 20, and for the testing section,

the Apply Model and Performance processes will be used to produce the results of the process and its accuracy.

Figure 21. Deep Learning Algorithm Results

The results of the deep learning algorithm can be seen in Figure 21. The algorithm has an accuracy

level of 90.74%.

122

4.3.3. Comparison

The evaluation phase involves observing the prediction results and comparing several classification

algorithms (Table 1), namely Naïve Bayes, K-NN, Decision Tree, Random Forest, and Deep Learning. This

process allows us to determine which algorithm has the best accuracy in predicting weather.

Model Hold Out Cross Validation

k-NN 88.84% 88.80%

Random Forest 90.35% 90.95%

Naïve Bayes 87.60% 87.14%

Decision Tree 90.08% 90.35%

Deep Learning 90.93% 90.74%
Table 1. Comparison of classification model accuracy

Figure 22. Comparison of classification algorithm model accuracy

Judging from the accuracy comparison in Table 1 and Figure 22, we can conclude that the most

suitable classification algorithms for weather prediction are Random Forest and Deep Learning. If using

the cross-validation method, Random Forest is the most suitable, while for Hold Out, Deep Learning is

the most suitable.

4. Deployment Model

Deployment model is the process of taking a trained machine learning model and converting it into an

application for use by users or other systems in the real world. The application will be based on the Random

Forest algorithm, using the Python programming language.

4.1 Model Training

Before coding the application, the first step is to train the model. Model training is the process by which

a computer learns from data to recognize patterns and make predictions or decisions based on them. Model

training will use the following code.

4.1.1 Import Library

The program begins by importing the necessary libraries (Figure 23). Pandas is used for data manipulation,

while train_test_split from sklearn.model_selection is used to divide the dataset into training and test data.

LabelEncoder from sklearn.preprocessing converts categorical labels into numbers. Next,

RandomForestClassifier from sklearn.ensemble is used to train the machine learning algorithm. Finally, joblib

is used to save the trained model so it can be reused without retraining.

123

 Figure 23. Import Library in coding

4.1.2 Load Data and Encode Labels

The program reads a file named "weather_classification_data.xlsx" using the read_excel function

from the Pandas library and stores it in the df variable (Figure 24). This data will be used as a source of

information for training the weather classification model.

Figure 24. Coding load data

The program uses LabelEncoder to convert category values such as "Cloud Cover," "Season,"

"Location," and "Weather Type" into numeric representations. Each column is processed in a loop, and

its encoder is stored in the label_encoders dictionary for reuse during decoding or new predictions (Figure

25).

Figure 25. Coding encode data

5.1.3 Split Data and Train Model

This step will separate the data into two main parts: features (X) and labels (y). Features contain all

columns except "Weather Type," while labels contain the "Weather Type" column to be predicted. The

data is then split into training and testing data in an 80:20 ratio using train_test_split, ensuring that the

data is tested on the portion of the data that the model has not previously trained on.

Next, a classification model was created using the Random Forest algorithm with parameters

n_estimators=200 (the number of trees in the forest) and max_depth=10 (the maximum tree depth) to

control model complexity. This model was then trained using the training data (X_train, y_train) to

recognize patterns in the given weather data (Figure 26).

 Figure 26. Coding split data and train model

124

5.1.4 Prediksi and Save

The model evaluation process continues using the test data. The previously trained model is used to

make predictions on the test data (X_test), and the results are stored in the y_pred variable. Next, accuracy

is calculated using the accuracy_score function, which compares the predicted results with the original

labels (y_test). The accuracy value is then displayed in a two-digit decimal format for ease of reading.

After the evaluation is complete, the model is saved to a file named "weather_model.pkl" using

joblib.dump, so it can be reused without retraining. In addition to the model, all LabelEncoder objects used

to transform the category values are also saved to the "label_encoders.pkl" file. Finally, the program prints

a message stating that the model training and saving were successful (Figure 27).

Figure 27. Coding data prediction and saving model

Finally, after the entire code has been successfully executed without error, the output will appear as in

the image above which displays "Model accuracy: 0.91" as the result of the model performance evaluation,

as well as the message "Model trained and saved successfully." which indicates that the model training

and saving process has been completed successfully (Figure 28).

Figure 28. Output from coding train_model.py

5.2 Application

Once the training process is complete and the model is successfully saved, the next step is to create an

application code that allows users to make weather predictions directly using the model that has been created.

5.2.1 Import Library

The program imports the tkinter module as tk, which is used to create the graphical interface (Figure

29). Additionally, ttk and messagebox from tkinter are imported to provide more modern GUI elements and

notification functionality to the user. The joblib module is also imported to load previously saved models and

encoders for use in the prediction process.

Figure 29. Import library for application coding

5.2.2 Load model and encoder

Initially, the prediction model (weather_model.pkl) and the LabelEncoder object (label_encoders.pkl) are

loaded using joblib.load (Figure 30). Next, the features list contains the names of the features the user will

input, such as temperature, humidity, wind speed, and categorical data such as season and location. To

distinguish between input types, categorical fields are explicitly defined in categorical_fields. The

predict_weather() function is defined to handle the prediction process when the user presses the prediction

button in the application. This function takes input from the user through the GUI entries component and then

processes each input value. If the input falls into a category like "Season" or "Location," the value is converted

to numeric form using the LabelEncoder. Otherwise, the value is converted to a float. All these input values

are then stored in the input_data list and used as input to the model. After that, we can add coding to the

application display according to our taste.

125

 Figure 30. Coding load model and encoder

5.3 Implementation of Coding

Based on the code above, after running, the program will produce an interface display like the following

which allows users to enter weather data and view the prediction results directly (Figure 31).

Figure 31. Display of the weather prediction program after data input

In this display, users can enter numbers corresponding to the weather conditions they wish to

predict. Once all data is entered and the program is run, the system will process the input and display the

weather prediction results. An example can be seen in the following illustration. After users enter weather

data into the app, the system automatically processes it and displays the forecast. Based on the input

provided, the forecast indicates that the expected weather conditions are "rainy" (Figure 32)

 Figure 32. Weather Prediction Results

126

6. Conclusions

Classification algorithms have their own advantages and disadvantages in weather prediction. Deep Learning

excels for large datasets with complex patterns but requires high resources. Random Forest provides accurate

results and is resistant to overfitting, suitable for medium-sized datasets with many features, although it is slower

for inference. Decision Trees are easy to understand and fast to train, but are prone to overfitting without pruning.

k-NN is effective for small datasets with local patterns but less efficient on large datasets. Naive Bayes is fast and

simple but often inaccurate due to the feature independence assumption, which rarely holds for weather data. The

choice of algorithm depends on the dataset size, pattern complexity, and resource availability. While weather

cannot be measured, it can be predicted.

References

[1] J. Brawijaya, F. Djohan, and K. M. Suryaningrum, “Aplikasi Pendeteksi Dan Analisa Cuaca Menggunakan

Metode K-Nearest Neighbor Berbasis Android,” JSTIE (Jurnal Sarj. Tek. Inform., vol. 8, no. 2, p. 43, 2020,

doi: 10.12928/jstie.v8i1.14623.

[2] A. K. Budiningtyas, “Analisis Kesulitan Siswa Dalam Menemukan Gagasan Pokok Pada Tema Cuaca

Subtema Pengaruh Cuaca Bagi Kehidupan Manusia Pada Siswa Kelas Iii Sekolah Dasar,” INOPENDAS J.

Ilm. Kependidikan, vol. 5, no. 2, pp. 75–81, 2022, doi: 10.24176/jino.v5i2.7707.

[3] D. Sartika and D. I. Sensuse, “Perbandingan Algoritma Klasifikasi Naive Bayes, Nearest Neighbour, dan

Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian,” Jatisi, vol. 1, no. 2, pp.

151–161, 2017, [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/78

[4] N. B. Putri and A. W. Wijayanto, “Analisis Komparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi

Website Phishing,” Komputika J. Sist. Komput., vol. 11, no. 1, pp. 59–66, 2022, doi:

10.34010/komputika.v11i1.4350.

[5] S. Adiningsi, “Mengenal Metode Algoritma Klasifikasi dan Penerapannya pada Data Mining,” Kompasiana.

[Online]. Available:

https://www.kompasiana.com/sriadiningsi7834/63500b0d08a8b535984c06d3/mengenal-metode-algoritma-

klasifikasi-dan-penerapannya-pada-data-mining#google_vignette

[6] Adminlp2m, “Algoritma k-Nearest Neighbors (k-NN) – Pengertian dan Penerapan,” LP2M. [Online].

Available: https://lp2m.uma.ac.id/2023/02/16/algoritma-k-nearest-neighbors-k-NN-pengertian-dan-

penerapan/

[7] M. Rohmah, “Apa itu Random Forest? Pengertian, Cara Kerja & Contohnya,” dibimbing.id. [Online].

Available: https://dibimbing.id/blog/detail/apa-itu-random-forest-pengertian-cara-kerja-contohnya

[8] S. Lestari, A. Akmaludin, and M. Badrul, “Implementasi Klasifikasi Naive Bayes Untuk Prediksi Kelayakan

Pemberian Pinjaman Pada Koperasi Anugerah Bintang Cemerlang,” PROSISKO J. Pengemb. Ris. dan Obs.

Sist. Komput., vol. 7, no. 1, pp. 8–16, 2020, doi: 10.30656/prosisko.v7i1.2129.

[9] I. M. B. Adnyana, “Implementasi Naïve Bayes Untuk Memprediksi Waktu Tunggu Alumni Dalam

Memperoleh Pekerjaan,” Semin. Nas. Teknol. Komput. Sains, vol. 1, no. 1, pp. 131–134, 2020, [Online].

Available: http://prosiding.seminar-id.com/index.php/sainteks/article/view/418

[10] M. R. D. Septian, A. A. A. Paliwang, M. Cahyanti, and E. R. Swedia, “Penyakit Tanaman Apel Dari Citra

Daun Dengan Convolutional Neural Network,” Sebatik, vol. 24, no. 2, pp. 207–212, 2020, doi:

10.46984/sebatik.v24i2.1060.

[11] A. Wibowo and I. R. Mahartika, “Data Mining Klasterisasi dengan Algoritme K-Means untuk

Pengelompokkan Provinsi Berdasarkan Konsumsi Bahan Bakar Minyak Nasional.” [Online]. Available:

https://seminar.iaii.or.id/index.php/SISFOTEK/article/view/108

[12] N. Narayan, “Weather Type Classification,” 2024, [Online]. Available:

https://www.kaggle.com/datasets/nikhil7280/weather-type-classification

[13] W. Handoko and M. Iqbal, “Prediksi Peminatan Program Studi Pada Penerimaan Mahasiswa Baru Stmik

Royal Menggunakan Naïve Bayes,” J. Sci. Soc. Res., vol. 4, no. 2, p. 231, 2021, doi: 10.54314/jssr.v4i2.661.

[14] F. Harits Muzaki, W. Joko Pranoto, and M. Kalimantan Timur, “Analisis Regresi Linear Dalam Data Mining

Untuk Prediksi Sijil Off Di Ksop Kelas I Samarinda,” J. Ilmu Tek., vol. 1, no. 2, pp. 261–266, 2024, [Online].

Available: https://doi.org/10.62017/tektonik

[15] S. Asyuti and A. A. Setyawan, “Data Mining Dalam Penggunaan Presensi Karyawan Denga Cluster Means,”

J. Ilm. Sains Teknol. Dan Inf., vol. 1, no. 1, pp. 01–10, 2023, [Online]. Available:

https://jurnal.alimspublishing.co.id/index.php/JITI/article/download/6/6

