2

(2) August 2024

Data Science Insights

Contents lists available at https://citedness.com/index.php/jdsi

Data Science Insights

Research article

Journal Page is available to https://citedness.com/index.php/jdsi

BRI

Evaluating and Deploying Predictive Models for Weather
Classification
Jolin Arfina Lie

Department of Informatics Engineering, Institut Bisnis dan Teknologi Pelita Indonesia, Pekanbaru, Riau, Indonesia
email: jolin.arfina@student.pelitaindonesia.ac.id

ARTICLE INFO

ABSTRAK

Article history:

Received

Revised July 14, 2024

Accepted July 17,2024
Available online 01 August, 2024

Keywords:
Analysis
Algorithm
Classification
Prediction
Weather

Please cite this article in IEEE
style as:

J. A. Lie, “Evaluating and
Deploying Predictive Models for
Weather Classification”, Data
Science Insights, vol. 2, no. 2.

Weather is the condition of the atmosphere in a specific location over a relatively short
period of time, described through various parameters such as temperature, air
pressure, wind speed, humidity, and other atmospheric phenomena. It differs from
climate, which refers to the average atmospheric conditions over a large area and a
long time period—studied under the field of climatology. Weather can vary from hot
to cold, wet to dry, and windy to calm. It is influenced by dynamic changes in the
Earth’s atmosphere, including warming and cooling processes.In recent years,
weather changes have become more frequent and unpredictable, significantly
affecting daily human activities. Therefore, an intelligent system capable of detecting
and predicting weather conditions is increasingly needed. This study aims to apply
classification algorithms to predict weather conditions based on relevant
meteorological parameters. The algorithms used include k-Nearest Neighbor,
Random Forest, Naive Bayes, Decision Tree, and Deep Learning.Given the
irregularity and complexity of weather patterns, manual prediction becomes
unreliable. Although it is impossible to predict the weather with absolute certainty,
computational methods can provide reasonably accurate estimations. Based on the
evaluation results, the Random Forest algorithm demonstrated the highest accuracy
among the tested models. Furthermore, the final model was successfully deployed
using Python, enabling real-time predictions on incoming weather data.

Correspondence:

Jolin Arfina Lie, Department of
Informatics Engineering, Institut
Bisnis dan Teknologi Pelita Indonesia,
Pekanbaru, Riau, Indonesia

Data Science Insights is an open access under the with CC BY-SA license.

Weather is the condition of the air in a place over a relatively short period of time, expressed by the values

of several parameters such as temperature, air pressure, wind speed, air humidity, and various other
atmospheric phenomena [1]. Weather is different from climate. Climate is the average temperature over a
large area over a long period of time. The science that studies climate is called climatology. Weather can be
hot or cold, wet or dry, windy or calm. Weather is caused by changes in the atmosphere around the Earth,

Recently, weather changes have been frequent and have had a significant impact on daily activities. Rapid
weather changes can hinder human activities. Weather changes that are difficult to predict make it difficult
for people to determine alternatives and anticipate weather changes when traveling [2]. Therefore, a system
is needed that can detect weather conditions.

This research aims to apply and compare several classification algorithms to predict weather conditions.
Given the irregularity of weather patterns, manual prediction is extremely difficult. While we cannot predict
the weather with certainty, we can still make estimates.

1. Introduction
either warming or cooling.
2. Literature Review

Classification is a technique for forming models from unclassified data, to be used to classify new data
[3]. Data classification is the process of finding a model or function that explains and differentiates data classes
and their concepts [4]. This classification is a supervised learning method that attempts to find relationships
between input attributes and target attributes. The purpose of this classification is to increase the reliability of
the results obtained from the data [5].

https://citedness.com/index.php/jdsi
https://citedness.com/index.php/jdsi
https://creativecommons.org/licenses/by-sa/4.0/

115

2.1 k-Nearest Neighbors
The Nearest Neighbor algorithm is an algorithm that classifies data based on the proximity (distance) of
data to other data. Classification is the process of assessing data objects to assign them to a specific class from
among a number of available classes [6]. This method is non-parametric, meaning it makes no assumptions
about the underlying data distribution. In other words, there is no fixed number of parameters or parameter
estimates in the model, regardless of the data size. k-NN classifies new data based on the majority class of the
k-Nearest Neighbors in the feature space as shown in Figure 1.

Class A
Class B

Unknown
class

Figure 1. k-Nerest Neighbor (k-NN) Illustration

2.2 Decision Trees and Random Forests

Decision treeis a machine learning algorithm used to perform classification and regression by breaking
down a dataset into smaller subsets based on certain features.This algorithm creates a model in the form of a
tree structure, where each internal node represents a feature or attribute, each branch represents a decision rule,
and each leaf represents an outcome or class label [7]. Meanwhile, Random Forest is a combination of several
decision trees. By combining several decision trees, random forest can produce a more accurate classification
model.

2.3 Naive Bayes

Naive Bayes is a method that divides problems into classes based on characteristics of similarities and
differences by using statistics that can predict the probability of a class [8]. NBC is a classification algorithm
that can be used to predict the probability of class membership by applying Bayes' theorem [9].

2.4 Deep Learning

Deep learningis a representation learning method that allows computational models composed of many
processing layers to learn data representations with many levels of abstraction [10]. Deep learning models
mimic the way the human brain works to solve classification problems. Deep learning processes data by
automatically extracting complex features.

3. Research Methodology
Data processing (Figure 2) is the process of manipulating, organizing, and storing data in order to draw
conclusions. The data processing process involves several stages: data collection, data processing, data
analysis, and data presentation.

Data
Selection/
Collection

Preprocesing/ Data Mining/ Model

Cleaning Modeling Deployment

Figure 2. Data Science Process

3.1 Data Selection/ Collection

From the operational data set before starting the Knowledge Discovery in Database (KDD) process. The
data that has been selected for use in the data mining process is then stored in a separate file from the
operational database [11]. At this stage, data collection was carried out in the form of a dataset regarding past
weather through the Kaggle website, with the title Weather Type Classification [12].

116

3.2 Pre-processing/ Cleaning
Data Cleaning is a stage carried out to handle data if missing values occur, removing columns that are
not really used or imbalances in the data[13]. In this process, we remove data in the weather dataset that has
no value (null) and duplicate data [14].
3.3 Data Mining/ Modelling
Data Mining is a process of data extraction or data filtering by utilizing data sets that are quite large in
size through a series of processes to obtain valuable information from the data [15]. Model development was
carried out by testing five different algorithms and comparing them to find the most suitable one. For the
weather dataset, several classification algorithms will be compared to compare their accuracy. The methods
used for this comparison are Cross Validation and Hold Out.
3.4. Model Deployment
After the development and training process of the weather classification model is completed, the next
important stage is model deployment. This stage aims to implement the classification model into a system that
can be used in a real-world context. The deployment process enables the trained model to receive actual weather
data and produce weather classifications automatically, quickly, and accurately
4. Results and Discussion
4.1. Data Selection/ Collection Results
Based on the obtained dataset, there are several attributes such as Temperature, Humidity, Wind Speed,
and others (Figure 3). The weather dataset includes several Weather Types (weather classes): Rainy, Cloudy,
Sunny, and Snowy, which will be used as labels. The dataset contains 13,200 rows of data.

Temperature | Humidity| Wind Speed | Precipitation (%) | Cloud Cover | Atmospheric Pressure | UV Index| Season | Visibility (km) | Location | Weather Type
14.0 73 9.5 82.0 partly doudy 1010.82 2 Winter 35 inland Rainy
39.0 96 8.5 710 partly doudy 1011.43 7 Spring 10.0 inland Cloudy
30.0 64 7.0 16.0 clear 1018.72 5 Spring 5.5 mountain Sunny
38.0 83 15 82.0 clear 1026.25 7 Spring 1.0 coastal Sunny
27.0 74 17.0 66.0 overcast 990.67 1 Winter 25 mountain Rainy
32.0 55 35 26.0 overcast 1010.03 2 Summer, 5.0 inland Cloudy
2.0 97 8.0 86.0 overcast 550.87 1 Winter 4.0 inland Snowy
3.0 85 6.0 96.0 partly doudy 984.46 1 Winter 35 inland Snowy
3.0 83 6.0 66.0 overcast 999.44 0 Winter 1.0 mountain Snowy
28.0 74 8.5 107.0 clear 1012.13 8 Winter 75 coastal sunny
35.0 45 6.0 86.0 partly cdloudy 879.88 2 Spring 1.0 mountain | Cloudy
38.0 43 2.0 16.0 dear 1029.16 11 | Autumn 75 inland Sunny
12.0 59 10.5 25.0 partly doudy 1016.08 3 Autumn 55 mountain | Cloudy

~10.0 87 15.0 67.0 overcast 986.19 0 Winter 15 inland Snowy
24.0 21 3.5 8.0 clear 1018.88 8 Winter 5.5 coastal Sunny
10.0 50 6.5 46.0 partly cloudy 1000.44 2 summer, 8.5 mountain | Cloudy
30.0 27 7.0 13.0 partly cloudy 1016.38 5 Spring 75 inland Sunny
33.0 51 05 27.0 overcast 1009.18 3 Autumn 55 coastal Cloudy
430 46 05 15.0 dear 1025.8] Spring 6.0 mountain Sunny
13.0 102 12.0 72.0 dlear 1012.25 4 Summer, 8.0 inland Sunny

Figure 3. Sample Weather Dataset

4.2. Preprocessing or Cleaning Results
In the data cleaning process for the weather dataset, the examples filter (Figure 3) was used to remove
missing values. After checking, no missing values were found in the processed data (Figure 4).

Retrieve weather_cl... Filter Examy;

14
v = ari f)

inp

unm [}

v

Figure 3. Data Cleaning Process in Rapid Miner

v E | (Filter 1 (Filter Examples)
openin | [Turbo Prep ﬁl AutoModel | of Interactive Analysis Filter (10,000 /10,000 examples). | all v
Row No. Temperature Humidity Wind Speed Precipitatio.. Cloud Cover Atmospheri.. UV Index Season
1 14 73 9500 82 pattiycloudy 1010.820 2 Wnter
2 39 % 8500 7 palycloudy 1011430 7 Spring
3 30 64 7 16 clear 1018720 5 Spring
4 38 83 1500 82 clear 1026250 7 Spring
5 27 74 17 66 overcast 990670 1 Winter
ol | s 2 55 3500 2 overcast 1010.030 2 Summer
7 2 o7 8 8 overcast 990870 1 Winter
8 3 85] 96 paycioudy 984.460 1 Winter
9 3 83 6 66 overcast 999.440 0 Winter
10 28 74 8500 107 clear 1012130 8 Winter
" 35 45 6 8 partlycloudy 879.880 2 Spring
12 £ 43 2 16 dlear 1029.160 1 Autumn
RE! 12 59 10500 2 partlycloudy 1016.080 3 Autumn
14 -10 87 15 67 overcast 986.190 0 Winter

Figure 4. Filter examples

117

4.3. Data Mining/ Modeling
In the model building process, it is essential to evaluate model performance objectively to ensure its ability to
generalize well to unseen data. Therefore, this study employs two commonly used validation approaches in
machine learning: the Hold-Out method and Cross-Validation. By using both validation methods, the study
allows for a more comprehensive comparison of model performance, and provides a stronger basis for selecting
the best algorithm to be deployed in the final stage.
4.3.1. Hold Out Method
Model development was carried out by testing five different algorithms and comparing them to find the
most suitable one. The rapidminer structure, as shown in Figure 5, begins by reading the dataset and then
dividing it into 70% test data and 30% training data.

Retrieve weather_cl... Set Role Muitiply Spiit Data lnn K-HN 2)

inp \im’) LE ~ o " ogg

Select Attributes

Fi
a
3

3
g @R EERERRER

Split Data (2} Random Forest Random Forest (2)
par tra med 1ab per.
! %
par e per e
par el

Split Data (3) Naive Bayes Maive Bayes (2)

par tra) r::: L

par

par

Apply Model (3)

mad lab

w ® mos

Split Data (4) Decision Tree Decision Tree (2)
par ' med lab per
! %
par exa per e
par wei

Apply Model (3)

mad b

w ® mos

Split Data (5) Deep Learning Deep Learning (2)

r = = " =
J %

e e

e

Apply Model (5)

mad lab

w ® ot

Figure 5. Hold Out Model

Naive Bayes
accuracy: 87.60%

true Rainy true Cloudy true Sunny true Snowy class precision
pred. Rainy 846 125 29 7 84.01%
pred. Cloudy 36 802 49 27 87.83%
pred. Sunny 46 52 916 41 86.82%
pred. Snowy 50 15 14 809 91.92%
class recall 86.50% 80.80% 90.87% 92.30%

Figure 6. Results of the Naive Bayes Algorithm

The results of the naive Bayes algorithm can be seen in Figure 6. The algorithm has an accuracy level of
87.60%.

118

k-NN (k-nearest neighbors)

accuracy: 88.84%

true Rainy true Cloudy true Sunny true Snowy class precision
pred. Rainy 872 74 49 19 86.00%
pred. Cloudy 60 844 49 20 86.74%
pred. Sunny 27 66 887 18 88.88%
pred. Snowy 18 20 22 915 93.85%
class recall 89.25% 84.06% 88.08% 94.14%

Figure 7. Results of the K-Nearest Neighbors Algorithm
The results of the k-NN algorithm can be seen in Figure 7. The algorithm has an accuracy level of 88.84%.

Decision Tree
accuracy: 90.08%

true Rainy true Cloudy true Sunny true Snowy class precision
pred. Rainy 952 85 60 40 83.73%
pred. Cloudy 41 846 51 28 87.58%
pred. Sunny 17 21 877 19 93.90%
pred. Snowy 9 1 hh 892 96.64%
class recall 93.42% 87.85% 87.79% 91.11%

Figure 8. Decision Tree Algorithm Results

The results of the decision tree algorithm can be seen in Figure 8. The algorithm has an accuracy level of
90.08%.

Random Forest
accuracy: 90.35%

true Rainy true Cloudy true Sunny true Snowy class precision
pred. Rainy 880 T2 23 13 89.07%
pred. Cloudy 39 865 45 32 88.18%
pred. Sunny 27 27 903 28 91.68%
pred. Snowy 28 26 22 930 92.45%
class recall 90.35% 87.37% 90.94% 92.72%

Figure 9. Random Forest Algorithm Results

The results of the random forest algorithm can be seen in Figure 9. The algorithm has an accuracy
level of 90.35%.

Deep Learning
accuracy: 90.93%

true Rainy true Cloudy true Sunny true Snowy class precision
pred. Rainy 922 46 13 T 93.32%
pred. Cloudy 61 885 50 39 85.51%
pred. Sunny 34 43 875 45 87.76%
pred. Snowy 10 5 i} 919 97 77%
class recall 89.78% 90.40% 92.69% 90.99%

Figure 10. Deep Learning Algorithm Results

The results of the deep learning algorithm can be seen in Figure 10. The algorithm has an accuracy
rate of 90.93%. This accuracy rate is the highest compared to other algorithms.

119

4.3.2. Cross Validation Method
The rapidminer structure, as shown in Figure 11, begins by reading the dataset and then dividing it into
70% test data and 30% training data. Afterward, cross-validation is performed, which includes classification.

Retrieve weather_c.. Select Aftributes Set Role Multiply Cross Validation
np C ot o o oa o) p ; o] om % med|
an anfy o o

o)

o per
ot i)

Cross Validation (2)
-] % meod|
o
)
per)
per)

Cross Validation (3)
= g
e
[)
per)
per[)

Cross Validation (4]
em mod|
% ™
)

i
i)

Cross Validation (5]
= g
em
)
ety
per)

Figure 11. Cross Validation Model

Naive Bayes

Naive Bayes Apply Model (2) Performance (2)
tra mod mod - - o % - tes
tr ff pz= wl ? med per oxa per

thr thr per

Figure 12. Naive Bayes Algorithm Using Rapidminer

In the training process, the naive Bayes algorithm process will be run (Figure 12), and for the testing section,
the Apply Model and Performance processes will be used to produce the results of the process and its accuracy.
accuracy: 87.14% +/- 1.34% (micro average: 87.14%)

true Rainy true Cloudy true Sunny true Snowy class precision
pred. Rainy 2818 422 93 29 83.82%
pred. Cloudy 156 2639 146 T4 87.53%
pred. Sunny 152 198 3023 175 85.20%
pred. Snowy 174 41 38 3022 92.27%
class recall 85.39% 79.97% 91.61% 91.58%

Figure 13. Results of the Naive Bayes Algorithm

The results of the naive Bayes algorithm can be seen in Figure 13. The algorithm has an accuracy rate of
87.14%. This accuracy is supported by relatively high precision and recall values.

s

3

3

3

3

e

120

k-Nearest Neighbors (k-NN)

Apply Model (2) Performance (2)

mod mod tes

mod lab lab % per
tes

.)
thr unl mod per exa e

tra

the per

Figure 14. K-Nearest Neighbors Algorithm using Rapidminer

In the training process, the k-NN algorithm process will be run (Figure 14), and for the testing section, the
Apply Model and Performance processes will be used to produce the results of the process and its accuracy.

accuracy: 88.80% +/- 0.41% (micro average: 88.80%)

true Rainy true Cloudy true Sunny true Snowy class precision
pred. Rainy 2949 282 150 66 85.55%
pred. Cloudy 170 2776 140 80 B87.68%
pred. Sunny 100 158 2928 85 89.51%
pred. Snowy 81 34 82 3069 92.55%
class recall 89.36% 84.12% 88.73% 93.00%

Figure 15. Results of the K-Nearest Neighbors Algorithm

The results of the k-NN algorithm can be seen in Figure 15. The algorithm has an accuracy rate of
88.80%. This accuracy rate is higher than testing on data using the Naive Bayes algorithm.

Decision Tree

Decision Tree (2) Apply Model (4) Performance (4)
tra x mod mod =] [=% % per tes
thr tes unl . mod per exa Ber

thr thr per

thr

Figure 16. Decision Tree Algorithm Using Rapidminer

In the training process, the Decision Tree algorithm process will be run (Figure 16), and for the testing section,
the Apply Model and Performance processes will be used to produce the process results and their accuracy.

accuracy: 90.35% +/- 0.68% (micro average: 90.35%)

true Rainy true Cloudy true Sunny true Snowy class precision
pred. Rainy 3002 215 124 67 88.09%
pred. Cloudy 183 2957 186 131 85.54%
pred. Sunny 50 66 2915 50 94.61%
pred. Snowy 65 62 75 3052 93.79%
class recall 90.97% 89.61% 88.33% 92.48%

Figure 17. Decision Tree Algorithm Results

The results of the decision tree algorithm can be seen in Figure 17. The algorithm has an accuracy
level of 90.35%.

121

Random Forest

Random Forest Apply Model (3) Performance (3)
fra tra mod medl medl mod lab lab % per tes
’ exa thr tes unl . mod per exa per
Wei thr thr per

thr

Figure 18. Random Forest Algorithm Using Rapidminer

In the training process, the Random Forest algorithm process will be run (Figure 18), and for the testing
section, the Apply Model and Performance processes will be used to produce the results of the process and its
accuracy.

accuracy: 90.95% +/- 0.76% (micro average: 90.95%)

true Rainy true Cloudy true Sunny true Snowy class precision
pred. Rainy 3022 220 92 61 89.01%
pred. Cloudy 156 2024 140 116 87.65%
pred. Sunny 85 107 3025 88 91.53%
pred. Snowy 37 49 43 3035 95.92%
class recall 91.58% 88.61% 91.67% 91.97%

Figure 19. Random Forest Algorithm Results
The results of the random forest algorithm can be seen in Figure 19. The algorithm has an accuracy

rate of 90.95%. This accuracy rate is the highest compared to other algorithms.

Deep Learning

g L nm— gy Machni 1 Bawagy i - ey o

]

Figure 20. Deep Learning Algorithm Using Rapidminer

In the training process, the Random Forest algorithm process will be run Figure 20, and for the testing section,
the Apply Model and Performance processes will be used to produce the results of the process and its accuracy.

accuracy: 90.74% +/- 0.91% (micro average: 90.74%)

true Rainy true Cloudy true Sunny true Snowy class precision
pred. Rainy 3015 212 91 71 858.96%
pred. Cloudy 150 2940 181 102 87.16%
pred. Sunny it 82 2962 GG 93.20%
pred. Snowy 67 66 66 2061 93.90%
class recall 91.36% 89.09% 89.76% 92.76%

Figure 21. Deep Learning Algorithm Results

The results of the deep learning algorithm can be seen in Figure 21. The algorithm has an accuracy
level of 90.74%.

122

4.3.3. Comparison

The evaluation phase involves observing the prediction results and comparing several classification
algorithms (Table 1), namely Naive Bayes, K-NN, Decision Tree, Random Forest, and Deep Learning. This
process allows us to determine which algorithm has the best accuracy in predicting weather.

Model Hold Out | Cross Validation
k-NN 88.84% 88.80%
Random Forest | 90.35% 90.95%
Naive Bayes 87.60% 87.14%
Decision Tree | 90.08% 90.35%
Deep Learning = 90.93% 90.74%

Table 1. Comparison of classification model accuracy

100

30

a0 +

70 4

60 -

50 1 W Hold Out

40 4 W Cross Validation
30 +

20 +

10 +

oA

Random Nawe Bayes Demsmn Tree Deep Learning
Forest

Figure 22. Comparison of classification algorithm model accuracy

Judging from the accuracy comparison in Table 1 and Figure 22, we can conclude that the most
suitable classification algorithms for weather prediction are Random Forest and Deep Learning. If using
the cross-validation method, Random Forest is the most suitable, while for Hold Out, Deep Learning is
the most suitable.

4. Deployment Model

Deployment model is the process of taking a trained machine learning model and converting it into an
application for use by users or other systems in the real world. The application will be based on the Random
Forest algorithm, using the Python programming language.

4.1 Model Training

Before coding the application, the first step is to train the model. Model training is the process by which
a computer learns from data to recognize patterns and make predictions or decisions based on them. Model
training will use the following code.

4.1.1 Import Library

The program begins by importing the necessary libraries (Figure 23). Pandas is used for data manipulation,
while train_test_split from sklearn.model selection is used to divide the dataset into training and test data.
LabelEncoder from sklearn.preprocessing converts categorical labels into numbers. Next,
RandomForestClassifier from sklearn.ensemble is used to train the machine learning algorithm. Finally, joblib
is used to save the trained model so it can be reused without retraining.

123

from skle
from sklearn.p ng import LabelEncoder

RandomForestClassifier

Figure 23. Import Library in coding

4.1.2 Load Data and Encode Labels
The program reads a file named "weather classification data.xIsx" using the read excel function
from the Pandas library and stores it in the df variable (Figure 24). This data will be used as a source of
information for training the weather classification model.

df = pd.read excel("weather_classification_data.xlsx")

Figure 24. Coding load data

The program uses LabelEncoder to convert category values such as "Cloud Cover," "Season,"
"Location," and "Weather Type" into numeric representations. Each column is processed in a loop, and
its encoder is stored in the label encoders dictionary for reuse during decoding or new predictions (Figure
25).

label encoders
categorical cols Cloud ason’, ‘Location', 'Weather
for col in categorical_cols:

le = LabelEncoder()

df[col] = le.fit transform(df[col])

label encoders[col] = le

Figure 25. Coding encode data

5.1.3 Split Data and Train Model
This step will separate the data into two main parts: features (X) and labels (y). Features contain all
columns except "Weather Type," while labels contain the "Weather Type" column to be predicted. The
data is then split into training and testing data in an 80:20 ratio using train_test_split, ensuring that the
data is tested on the portion of the data that the model has not previously trained on.

Next, a classification model was created using the Random Forest algorithm with parameters
n_estimators=200 (the number of trees in the forest) and max_depth=10 (the maximum tree depth) to
control model complexity. This model was then trained using the training data (X_train, y_train) to
recognize patterns in the given weather data (Figure 26).

df .drop("weather , axis=1)
df ["weat

_train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)

model = RandomF Classifier(
n_estimator
max_depth=1e,
random state=42

)

model.fit(X train, y train)

Figure 26. Coding split data and train model

124

5.1.4 Prediksi and Save
The model evaluation process continues using the test data. The previously trained model is used to
make predictions on the test data (X _test), and the results are stored in the y_pred variable. Next, accuracy
is calculated using the accuracy score function, which compares the predicted results with the original
labels (y_test). The accuracy value is then displayed in a two-digit decimal format for ease of reading.
After the evaluation is complete, the model is saved to a file named "weather model.pkl" using
joblib.dump, so it can be reused without retraining. In addition to the model, all LabelEncoder objects used
to transform the category values are also saved to the "label encoders.pkl" file. Finally, the program prints
a message stating that the model training and saving were successful (Figure 27).

y_pred = model.predict(X test)

accurac accuracy_score(y_test, y_pred)
print(urasi model: {accuracy)

1b.dump(model, " ¢
b.dump(label encoders

print(’ el trained and

Figure 27. Coding data prediction and saving model

Finally, after the entire code has been successfully executed without error, the output will appear as in
the image above which displays "Model accuracy: 0.91" as the result of the model performance evaluation,
as well as the message "Model trained and saved successfully." which indicates that the model training
and saving process has been completed successfully (Figure 28).

ONSOLE TERMINAL PORTS

PS €:\54_DatasScienceIT\Test1> & C:/Users/user/AppData/Local/Programs/Python/Python313/python.exe c:/S4 DataScienceIT/Test1/train_model.py
Akurasi model: .91
Model trained and saved successfully.

Figure 28. Output from coding train_model.py

5.2 Application
Once the training process is complete and the model is successfully saved, the next step is to create an
application code that allows users to make weather predictions directly using the model that has been created.

5.2.1 Import Library
The program imports the tkinter module as tk, which is used to create the graphical interface (Figure
29). Additionally, ttk and messagebox from tkinter are imported to provide more modern GUI elements and
notification functionality to the user. The joblib module is also imported to load previously saved models and
encoders for use in the prediction process.

tk
t ttk, mes

Figure 29. Import library for application coding

5.2.2 Load model and encoder

Initially, the prediction model (weather model.pkl) and the LabelEncoder object (label encoders.pkl) are
loaded using joblib.load (Figure 30). Next, the features list contains the names of the features the user will
input, such as temperature, humidity, wind speed, and categorical data such as season and location. To
distinguish between input types, categorical fields are explicitly defined in categorical fields. The
predict weather() function is defined to handle the prediction process when the user presses the prediction
button in the application. This function takes input from the user through the GUI entries component and then
processes each input value. If the input falls into a category like "Season" or "Location," the value is converted
to numeric form using the LabelEncoder. Otherwise, the value is converted to a float. All these input values
are then stored in the input data list and used as input to the model. After that, we can add coding to the
application display according to our taste.

125

model = joblib.load{
label_encoders

feat

categorical fields = ["Clou

predict_weather():
try:
input data = []
for feat in features:
val = entries[feat].get()
if feat categorical fields:
val = label encoders[feat].transform([val])[@]
else:
val = float(val)
input_data.append(val)

pred

resu label encoders[” th *].inverse_transform([pred])[0]
showinfo(" @ ' ') iksi
n as e:
showerror(“Terjadi

Figure 30. Coding load model and encoder

5.3 Implementation of Coding
Based on the code above, after running, the program will produce an interface display like the following
which allows users to enter weather data and view the prediction results directly (Figure 31).

¥ Aplikasi Prediksi Cuaca - X

@ Prediksi Cuaca Hari Ini

Temperature [a]

Humidity []

Wind Speed fes]

Precipitation (%) [e2]

Cloud Cover partly cloudy -
Atmospheric Pressure [1010.82]
UV Index k]
Season Wintes -

Visibility (km s]

Figure 31. Display of the weather prediction program after data input

In this display, users can enter numbers corresponding to the weather conditions they wish to
predict. Once all data is entered and the program is run, the system will process the input and display the
weather prediction results. An example can be seen in the following illustration. After users enter weather
data into the app, the system automatically processes it and displays the forecast. Based on the input
provided, the forecast indicates that the expected weather conditions are "rainy" (Figure 32)

lf ‘@ Hasil Prediksi Cuaca X

o ® Cuaca diprediksi: RAINY

Figure 32. Weather Prediction Results

126

6. Conclusions

Classification algorithms have their own advantages and disadvantages in weather prediction. Deep Learning
excels for large datasets with complex patterns but requires high resources. Random Forest provides accurate
results and is resistant to overfitting, suitable for medium-sized datasets with many features, although it is slower
for inference. Decision Trees are easy to understand and fast to train, but are prone to overfitting without pruning.
k-NN is effective for small datasets with local patterns but less efficient on large datasets. Naive Bayes is fast and
simple but often inaccurate due to the feature independence assumption, which rarely holds for weather data. The
choice of algorithm depends on the dataset size, pattern complexity, and resource availability. While weather
cannot be measured, it can be predicted.

References

[1] J. Brawijaya, F. Djohan, and K. M. Suryaningrum, “Aplikasi Pendeteksi Dan Analisa Cuaca Menggunakan
Metode K-Nearest Neighbor Berbasis Android,” JSTIE (Jurnal Sarj. Tek. Inform., vol. 8, no. 2, p. 43, 2020,
doi: 10.12928/jstie.v8il.14623.

[2] A. K. Budiningtyas, “Analisis Kesulitan Siswa Dalam Menemukan Gagasan Pokok Pada Tema Cuaca
Subtema Pengaruh Cuaca Bagi Kehidupan Manusia Pada Siswa Kelas Iii Sekolah Dasar,” INOPENDAS J.
1lm. Kependidikan, vol. 5, no. 2, pp. 75-81, 2022, doi: 10.24176/jino.v5i2.7707.

[3] D. Sartika and D. 1. Sensuse, ‘“Perbandingan Algoritma Klasifikasi Naive Bayes, Nearest Neighbour, dan
Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian,” Jatisi, vol. 1, no. 2, pp.
151-161, 2017, [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/78

[4] N.B. Putriand A. W. Wijayanto, “Analisis Komparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi
Website Phishing,” Komputika J. Sist. Komput., vol. 11, no. 1, pp. 59-66, 2022, doi:
10.34010/komputika.v11i1.4350.

[5] S. Adiningsi, “Mengenal Metode Algoritma Klasifikasi dan Penerapannya pada Data Mining,” Kompasiana.
[Online]. Available:
https://www.kompasiana.com/sriadiningsi7834/63500b0d08a8b535984c06d3/mengenal -metode-algoritma-
klasifikasi-dan-penerapannya-pada-data-mining#google vignette

[6] Adminlp2m, “Algoritma k-Nearest Neighbors (k-NN) — Pengertian dan Penerapan,” LP2M. [Online].
Available: https://Ip2m.uma.ac.id/2023/02/16/algoritma-k-nearest-neighbors-k-NN-pengertian-dan-
penerapan/

[71 M. Rohmah, “Apa itu Random Forest? Pengertian, Cara Kerja & Contohnya,” dibimbing.id. [Online].
Available: https://dibimbing.id/blog/detail/apa-itu-random-forest-pengertian-cara-kerja-contohnya

[8] S. Lestari, A. Akmaludin, and M. Badrul, “Implementasi Klasifikasi Naive Bayes Untuk Prediksi Kelayakan
Pemberian Pinjaman Pada Koperasi Anugerah Bintang Cemerlang,” PROSISKO J. Pengemb. Ris. dan Obs.
Sist. Komput., vol. 7, no. 1, pp. 8-16, 2020, doi: 10.30656/prosisko.v7i1.2129.

[9] I. M. B. Adnyana, “Implementasi Naive Bayes Untuk Memprediksi Waktu Tunggu Alumni Dalam
Memperoleh Pekerjaan,” Semin. Nas. Teknol. Komput. Sains, vol. 1, no. 1, pp. 131-134, 2020, [Online].
Available: http://prosiding.seminar-id.com/index.php/sainteks/article/view/418

[10] M. R. D. Septian, A. A. A. Paliwang, M. Cahyanti, and E. R. Swedia, “Penyakit Tanaman Apel Dari Citra
Daun Dengan Convolutional Neural Network,” Sebatik, vol. 24, no. 2, pp. 207-212, 2020, doi:
10.46984/sebatik.v24i2.1060.

[11] A. Wibowo and I. R. Mahartika, “Data Mining Klasterisasi dengan Algoritme K-Means untuk
Pengelompokkan Provinsi Berdasarkan Konsumsi Bahan Bakar Minyak Nasional.” [Online]. Available:
https://seminar.iaii.or.id/index.php/SISFOTEK /article/view/108

[12] N. Narayan, “Weather Type Classification,” 2024, [Online]. Available:
https://www.kaggle.com/datasets/nikhil7280/weather-type-classification

[13] W. Handoko and M. Igbal, “Prediksi Peminatan Program Studi Pada Penerimaan Mahasiswa Baru Stmik
Royal Menggunakan Naive Bayes,” J. Sci. Soc. Res., vol. 4,no0. 2, p. 231, 2021, doi: 10.54314/jssr.v4i2.661.

[14] F. Harits Muzaki, W. Joko Pranoto, and M. Kalimantan Timur, “Analisis Regresi Linear Dalam Data Mining
Untuk Prediksi Sijil Off Di Ksop Kelas I Samarinda,” J. Ilmu Tek., vol. 1, no. 2, pp. 261-266, 2024, [Online].
Available: https://doi.org/10.62017/tektonik

[15] S. Asyuti and A. A. Setyawan, “Data Mining Dalam Penggunaan Presensi Karyawan Denga Cluster Means,”
J. Ilm. Sains Teknol. Dan Inf,, vol. 1, no. 1, pp. 01-10, 2023, [Online]. Available:
https://jurnal.alimspublishing.co.id/index.php/JIT]/article/download/6/6

