Application of Decision Tree Algorithm for Classification of Rice Yields in Sumatra

Authors

  • wily candra Institut Bisnis dan Teknologi Pelita Indonesia

DOI:

https://doi.org/10.63017/jdsi.v2i2.103

Keywords:

application, classification, Decision Tree, Rice crop, sumatera

Abstract

Rice is the main food crop in Indonesia, most of the agricultural sector in Indonesia is dominated by rice farming including on the island of Sumatra. A common problem that arises is how to find out the areas that produce the most rice each year on the island of Sumatra. This study aims to classify the areas that produce the most rice on the island of Sumatra. The dataset used in this study was taken from Kaggle with a total of 225 data and will be tested using the Decision Tree algorithm and several other algorithms. For data visualization, Tableau will be used to see which areas produce the most rice on the island of Sumatra. By using the research method using the Decision Tree algorithm, an accuracy of 97.78% was obtained with a data split of 0.8 for training data and 0.2 for testing data.

References

H. Tohari, S. Harini, M. A. Yaqin, I. B. Santoso, and C. Crysdian, “Penerapan Metode Support Vector Machine (SVM) Dalam Klasifikasi Produktivitas Padi,” J. Comput. Syst. Informatics, vol. 5, no. 1, pp. 175–183, 2023, doi: 10.47065/josyc.v5i1.4538.

A. M. Siregar and A. Fauzi, “Klasifikasi Kab Kota Provinsi Jawa Barat Berdasarkan Pendapatan Dari Sektor Pertanian Dengan Algoritma Decision Tree,” Fakt. Exacta, vol. 13, no. 1, p. 1, 2020, doi: 10.30998/faktorexacta.v13i1.5542.

S. Keputusan Dirjen Penguatan Riset dan Pengembangan Ristek Dikti, A. Nurkholis, and T. Susanto, “Terakreditasi SINTA Peringkat 2 Algoritme Spatial Decision Tree untuk Evaluasi Kesesuaian Lahan Padi Sawah Irigasi,” Masa Berlaku Mulai, vol. 1, no. 3, pp. 978–987, 2017.

A. Nurkholis, M. Muhaqiqin, and T. Susanto, “Analisis Kesesuaian Lahan Padi Gogo Berbasis Sifat Tanah dan Cuaca Menggunakan ID3 Spasial (Land Suitability Analysis for Upland Rice based on Soil and Weather Characteristics using Spatial ID3),” JUITA J. Inform., vol. 8, no. 2, pp. 235–244, 2020.

A. Satria, R. M. Badri, and I. Safitri, “Prediksi Hasil Panen Tanaman Pangan Sumatera dengan Metode Machine Learning,” Digit. Transform. Technol., vol. 3, no. 2, pp. 389–398, 2023, doi: 10.47709/digitech.v3i2.2852.

A. Nurkholis and I. S. Sitanggang, “Optimization for prediction model of palm oil land suitability using spatial decision tree algorithm,” J. Teknol. dan Sist. Komput., vol. 8, no. 3, pp. 192–200, 2020, doi: 10.14710/jtsiskom.2020.13657.

G. Engineering et al., “, Ryo Anugrah,” vol. 2, no. 1, pp. 36–40, 2023.

R. Adolph, “済無No Title No Title No Title,” vol. 5, pp. 1–23, 2016.

M. Masnur and M. Ali, “Sistem Penunjang Keputusan Penentuan Kesesuaian Budidaya Tanaman Padi Pulu’ Mandoti Menggunakan Metode Forward Chaining,” J. Sintaks Log., vol. 1, no. 3, pp. 146–152, 2021, doi: 10.31850/jsilog.v1i3.1084.

R. P. Fhonna, Y. Afrillia, Zulfan, J. Aqmal, and S. Abadi, “Klasifikasi Penentuan Jenis Tanah yang Sesuai Terhadap Tanaman Pangan Sebagai Solusi Ketahanan Pangan di Kabupaten Pidie Jaya Menggunakan Metode Random Forest,” J. Inf. dan Teknol., vol. 5, no. 4, pp. 12–18, 2023, doi: 10.60083/jidt.v5i4.402.

F. Joanda Kaunang, R. Rotikan, and G. Stella Tulung, “Pemodelan Sistem Prediksi Tanaman Pangan Menggunakan Algoritma Decision Tree Crop Prediction System Using Decision Tree Algorithm,” Cogito Smart J., vol. 4, no. 1, pp. 213–218, 2018.

N. Putri Setyadini, “Penerapan Data Mining Untuk Prediksi Hasil Produksi KaretMenggunakan Algoritma Decision Tree C4.5,” Informatika, vol. 2, no. 7, pp. 1–11, 2022.

J. T. Elekterika et al., “Klasifikasi Penyakit Tanaman Jagung Melalui Citra Daun Dengan Menggunakan Metode Deep Learning,” vol. x, no. x.

A. Ramadhani and M. A. Sembiring, “Sistem Kendali Berbasis Machine Learning Menggunkan Model Neive Bayes Pada Pengeringan Padi Otomatis,” J. Sci. Soc. Res., vol. 5, no. 3, p. 690, 2022, doi: 10.54314/jssr.v5i3.1040.

A. I. Widyatami and V. M. Reistiani, “Clustering Wilayah Potensi dan Strategi Pengembangan Komoditas Unggulan Tanaman Hortikultura dan Palawija Level Kecamatan di Sumatera Barat Tahun 2021,” Semin. Nas. Off. Stat., vol. 2023, no. 1, pp. 41–52, 2023, doi: 10.34123/semnasoffstat.v2023i1.1737.

Harvest results from each province according to production scale

Downloads

Published

2024-08-01

How to Cite

[1]
wily candra, “Application of Decision Tree Algorithm for Classification of Rice Yields in Sumatra”, Data Science Insights, vol. 2, no. 2, pp. 96–104, Aug. 2024.