Cluster Analysis on Laptop Sales Data and Specifications Using K-Means and K-Medoids Methods
DOI:
https://doi.org/10.63017/jdsi.v2i2.38Keywords:
Clustering, K-Means, K-Medoids, Laptop Sales, Laptop SpesificationAbstract
This research aims to address the challenges in understanding the relationship between laptop specifications and sales prices and to enhance product segmentation based on cluster analysis. By using available laptop specifications and sales price data, this study aims to identify patterns in laptop specifications that influence sales prices using K-Means and K-Medoids cluster analysis. This research employs the K-Means and K-Medoids clustering methods to categorize laptops into several categories based on specifications such as screen size (inches), price, RAM capacity, and weight. The data transformation process, exploratory analysis, model building, and cluster performance evaluation were conducted using the RapidMiner analysis tool. The research results show that the K-Medoids algorithm provides more accurate clustering performance compared to K-Means, with a Davies-Bouldin Index value of -0.665 for K-Medoids and -0.487 for K-Means at configurations k=4 and k=5. A lower Davies-Bouldin Index value indicates that K-Medoids better represents the characteristics of the existing data. The clustering results identify laptop categories based on a combination of specifications and prices, which can be used by manufacturers and sellers to develop more targeted marketing strategies. This research is expected to provide useful insights for the laptop industry in understanding consumer preferences and needs, and to assist in making more informative decisions to improve sales and customer satisfaction.
References
W. Aprilyani et al., “Klasterisasi Data Penjualan Alat Transportasi Dengan Rapidminer Menggunakan Metode K-Medoid," vol. 8, no. 2, pp. 1348–1353, 2024.
H. Syahputra, “Clustering Tingkat Penjualan Menu (Food and Beverage) Menggunakan Algoritma K- Means,” J. KomtekInfo, vol. 9, pp. 29–33, 2022, doi: 10.35134/komtekinfo.v9i1.274.
A. Nugraha, O. Nurdiawan, and G. Dwilestari, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Yana Sport,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 849–855, 2022, doi: 10.36040/jati.v6i2.5755.
M. N. Setiawan, Purwono, and I. A. Ashari, “Terakreditasi SINTA Peringkat 4 Analisa Cluster Data Transaksi Penjualan Minimarket Selama Pandemi Covid-19 dengan Algoritma K-means,” vol. 3, no. 1, pp. 153–160, 2018.
R. Gustrianda and D. I. Mulyana, “Penerapan Data Mining Dalam Pemilihan Produk Unggulan dengan Metode Algoritma K-Means Dan K-Medoids,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 27, 2022, doi: 10.30865/mib.v6i1.3294.
L. ANWER, “SuperStore Sales Dataset,” www.kaggle.com. Accessed: Jun. 25, 2024. [Online]. Available: https://www.kaggle.com/datasets/laibaanwer/superstore-sales-dataset
N. Suarna and Y. Arie Wijaya, “Analisa Penerapan Metode Clustering K-Means Untuk Pengelompokan Data Transakasi Konsumen (Studi Kasus: Cv. Mitra Indexindo Pratama),” J. Mhs. Tek. Inform., vol. 7, no. 2, pp. 1322–1328, 2023.
geeksforgeeks, “Normalisasi Data dalam Data Mining,” www.geeksforgeeks.org. Accessed: Jun. 25, 2024. [Online]. Available: https://www.geeksforgeeks.org/data-normalization-in-data-mining/
Trivusi, “Metode-Metode dalam Feature Selection,” www.trivusi.web.id. Accessed: Jun. 25, 2024. [Online]. Available: https://www.trivusi.web.id/2019/02/metode-metode-dalam-feature-selection.html
D. Vogiatzis, “Panduan Anda tentang Teknik Transformasi Data,” blog.coupler.io. Accessed: Jun. 25, 2024. [Online]. Available: https://blog.coupler.io/data-transformation-techniques/
Y. Ws, “Mengenal Exploratory Data Analysis," eksplorasidata.mipa.ugm.ac.id. Accessed: Jun. 25, 2024. [Online]. Available: https://eksplorasidata.mipa.ugm.ac.id/2021/08/16/mengenal-exploratory-data- analysis/
R. Maoulana, B. Irawan, and A. Bahtiar, “Data Mining Dalam Konteks Transaksi Penjualan Hijab Dengan Menggunakan Algoritma Clustering K-Means,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 515– 521, 2024, doi: 10.36040/jati.v8i1.8504.
Y. Sopyan, A. D. Lesmana, and C. Juliane, “Analisis Algoritma K-Means dan Davies Bouldin Index dalam Mencari Cluster Terbaik Kasus Perceraian di Kabupaten Kuningan,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1464–1470, 2022, doi: 10.47065/bits.v4i3.2697.
Youtap, “Cara Jitu Mengetahui Produk Paling Laris Sesuai Tren Pasar,” www.youtap.id. Accessed: Jun. 25, 2024. [Online]. Available: https://www.youtap.id/blog/cara-mengetahui-produk-paling-laris
N. Ameliana, N. Suarna, and W. Prihartono, “Analisis Data Mining Pengelompokkan Umkm Menggunakan Algoritma K-Means Clustering Di Provinsi Jawa Barat,” vol. 8, no. 3, pp. 3261–3268, 2024.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Data Science Insights

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.